Identification of Correlation between Blood Relations using Speech Signal

TitleIdentification of Correlation between Blood Relations using Speech Signal
Publication TypeConference Proceedings
Year of Conference2017
AuthorsPalli, P., K. Bhowmick, and S.. Tripathi
Conference NameInternational Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES 2017)
KeywordsDept. of Electronics and communication Engineering.

This paper presents a study of how speech features have comparable parameters amongst blood relations. Mel Frequency Cepstral Coefficients (MFCC) has been used for extracting the features of input speech signal, along with vector quantization through modified k-means LBG (Linde, Buzo, and Gray) algorithm are implemented to analyse and estimate the similarity to perform related studies. The study is concentrated on database using 12 families from which voice databases were collected from all users, of different age groups, of each family. The Finding of the study shows a high correlation (Max ~ 95%) between similar genders of the family and low correlation (Min ~ 80%) between dissimilar genders of the family.